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ABSTRACT

The USAF ATHENA is a re-entry test vehicle which has four solid

propellant stages. A midcourse correction type of guidance is used

to compensate for boost dispersions by adjusting the third stage

attitude and ignition time. The guidance computations are performed

in a ground based digital computer using radar data obtained after

second stage burnout. Because this is a re-entry test vehicle, the

guidance system must cause the payload to meet various re-entry

constraints as wellas the usual impact point constraint. The com-

plete derivation of the guidance equations and a description of the

entire guidance loop are presented in this report.
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SECTION 1

INTRODUCTION

The purpose of the USAF ATHENA vehicle is to deliver test payloads at

typical ballistic missile re-entry conditions for the Advanced Ballastic Re-

Entry Systems (ABRES) program. The ATHENA is launched from Green

River, Utah, and the payloads impact on the White Sands Missile Range

(WSMR) in New Mexico.

The ATHENA vehicle, consisting of four solid propellant stages which are

burned to propellant depletion, is launched from a rail launcher. The

launcher is oriented so as to compensate for winds, based on meteorological

data obtained just prior to launch. The first and second stages are fired in

an upward direction and are controlled by a combination of spin stabilization

and fixed aerodynamic fins. This type of control, which causes the vehicle

to fly near zero angle of attack, has been used on many sounding rockets.

After second stage burnout the vehicle is despun and a reaction jet attitude

control system orients the third and fourth stages in a nominal attitude

relative to a prelaunch-erected gyro reference system.

The attitude corrections and third stage ignition time required to compensate

for dispersions which occur during first and second stage operation are com-

puted using radar data acquired after second stage burnout. These computa-

tions are performed in a ground based digital computer at WSMR and the

necessary commands are then transmitted to the vehicle. After the vehicle

has stabilized in the proper attitude, it is spun up to a rate high enough to

inertially stabilize the third and fourth stages during thrusting, after which

the attitude control system is separated. The third stage is then ignited at

the computed time and the fourth stage ignites at a predetermined time after

third stage burnout.

-1-



The purpose of this document is to present the derivation of the equations

used to determine the required third and fourth stage attitude and ignition

time from the radar data acquired after second stage burnout.



SECTION 2

PROBLEM STATEMENT

The ATHENA guidance problem is similar to the classical midcourse

correction problem; that is, the position and velocity of the vehicle are

determined with the use of ground based radars and this information is then

used to determine the direction and time of initiation of a velocity increment

that satisfies given constraints. The magnitude of the velocity increment

cannot be varied in this case since the solid propellant stages are burned to
fuel depletion. The direction of the velocity increment is controlled by
vehicle orientation and fixed by spin-stabilizing the third and fourth stages

after orientation.

Position and velocity for the guidance computation need be determined at

only one instant of time, and for simplification this is chosen as nominal

third stage ignition time for all flights. The time of flight at which actual

radar data becomes available varies from flight to flight, but it is always

acquired after the vehicle has left the sensible atmosphere. Hence, a form

of Kepler's equations may be used for predicting position and velocity at the
predetermined time from position and velocity derived from the radar data

at any exo-atmospheric read-out time (Reference 1).

In addition to constraining the impact point, the corrections which are com-

puted by these equations must constrain the vehicle to an angle of attack as

near null as possible at a predetermined altitude in order to satisfy test

requirements. However, if the launch dispersions require corrections that

would reduce the re-entry separation distance between the payload and the

fourth stage below a critical minimum, it is necessary to substitute a

separation distance constraint for the angle of attack constraint. The method

used to obtain the solution to the guidance problem is discussed in the next

section.
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SECTION 3

METHOD OF SOLUTION

The analytical description of the problem is derived from two basic sets of

information. These are (1) the classical equations of motion and (2) the

equations which analytically express the desired program constraints.

The equations of motion are written in vector form in an earth-centered iner-

tial coordinate system and are integrated to obtain the dynamics equations.

The variables in these equations are the body attitude (expressed in direction

cosines), the third stage ignition time (expressed in terms of the fourth stage

burnout time), the time and position at the test altitude and impact, and the

velocity at the test altitude. The dynamics equations comprise a set of nine

nonlinear equations with fifteen unknowns.

LSix constraint equations express the desired impact point and either the angle

of attack constraint or separation distance constraint in terms of the variables

in the equations of motion. This results in a total set of fifteen equations

with fifteen unknowns. The simultaneous solution of these nonlinear equations

yields the required attitude and ignition time of the third stage.

A linear solution of these equations, made possible by expanding the nonlinear

terms in a Taylor series or equivalent technique and retaining only first order

terms, will not result in a solution which is sufficiently accurate over the

required range of inputs. The significant part of the inaccuracy in this solu-

tion is a result of the linearization of terms involving products of two varia-

bles. Because all of these terms are functions of the body attitude, which is

determined in the solution, it is possible to recompute the "nominal" values

in the linear approximations for these terms after completing the solution

of the linearized equations. This leads to an iteration procedure which

converges on a solution which is sufficiently close to the solution obtained

from a complete trajectory integration program to meet all of the ATHENA

£requirements.
-5-



0
The solution therefore consists of the following steps.

a. Integrate the differential equations of motion to obtain

nonlinear dynamics equations.

b. Write algebraic equations which analytically describe the
system constraints.

C. Linearize these equations, where necessary, using a Taylor
series expansion or equivalent technique and retain only
nominal and first order terms.

d. Solve the linearized equations for the unknown variables,
which include the direction cosines of the body axis and the
third stage ignition time.

e. Recompute the "nominal" terms which are functions of body
attitude in the Taylor series approximation.

f. Repeat steps d and e until the body attitude does not change.

The derivation of these equations is described in detail in the remainder of

this report. The solution has been programmed on a digital computer and is

presently part of the real-time computer program that is used in the guidance

and command of the ATHENA vehicle.

0



SECTION 4

THE DERIVATION

4.1 DYNAMICS EQUATIONS

The dynamics equations are derived in vector form starting with Newton's

law,

F =mD (1)

Figure 1 is a geometric description of the problem.

The acceleration of the vehicle results from gravitational and thrust forces,

therefore

F m(a+j) (2)

and

.D =2+1 (3)

Integrating both sides of Equation (3) from tR to t (Figure 2 is a description

of the time notation) where t > tT and rearranging yields

* . t~ t
D=T a dt +f dt (4)

tt

0 R
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0

Integrating both sides of Equation (4) from tR to t where t > t and re-

arranging terms gives

ftf tD2-R + D R(t - tR) Ito to a dt dt 1 + (t - t T)ft a dt

t0 0

+ tf t dt dt 1  
(5)

The velocity increment due to the third and fourth stage thrusting is

Av ftT a dt (6)
-J0

The distance traveled during third and fourth stage thrusting due only to the

vehicle propulsion system is

AD t0 "to _ dtI  (7)

t)0

At the time the vehicle reaches the test altitude, t = tT and Equation (5)

becomes

.2T 2R+ D t +D+tT lg dt dtI  (8)
_D R (tT -tR) D T - t t JR

-10-



W-

S

At the time the vehicle reaches the impact point, t = t I and Equation (5)

becomes

DI= DR DR(tI- tR) + &D + V(t- t) + f ldt dt (9)R R tR

An equation which relates the velocity at the test altitude to the other

problem variables is required because of the angle of attack constraint.

At the time the vehicle reaches the test altitude,t = tT and Equation (4)

becomes

ftTg

DT = DR + V +ftudt (10)
tR

Since the air mass is assumed to rotate with the earth, the required velocity

equation is

tD T =DT-_DT (I)

Substituting Equation (10) into Equation (11) gives

d dtD- = XDT (12)
=t -T R + AV + t-- tR

Equations (8), (9) and (12) represent the nine scalar equations that define

the dynamics from tR to tI '

S
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0
4.2 LINEARIZING THE DYNAMICS EQUATIONS

In Equations (8) and (9), terms of the form (AV) (t i ) where i = T, I, r must

be linearized because they are products of the unknown variables. The

linearization in this case is performed in the following manner.

Let

AV &VN + 6&V (13)

and

tT tTN + 6 tT (14)

therefore

(&V)(tT) = (AVN + 6 AV)(tTN + 6 tT) (15)

Expanding and neglecting products of perturbations

(AV)(tT) s V(tTN) + VN(tT) - AVN(tTN) (16)

Similar expressions result for tI and t .

In Equations (8), (9) and (12) the terms involvingj& are linearized as

follows.

tTNg dt - TN(tTN - tT)(17)

ftR'T dt ft (17



SJ

and

1dt dtJ t gdt dt + (tT TNJ gdt (18)

t R t R ftR R ftR

A similar equation results for the double integral of.& between tR and tI '

The linearized form of Equations (8), (9), and (12) is presented in the

linearized equation summary.

Because the solid propellant engines are burned to fuel depletion, the

magnitudes of AV and AD are constants which can be determined before

flight. The spin stabilization of the third and fourth stages orients the vehicle

in inertial space and as a result AV and 6D are parallel and are completely

defined by their magnitudes and the direction cosines of the body rollaxis. That

is, AD can be expanded as a function of the body axis direction cosines as

follows

AD = AD I(DCx) I + lAD l(D~y)J+ JAD l(DCz)i (19)

The vectors DR and D can be determined from the radar data at the pre-

selected time tR. The vector w is the rotation rate of the earth and the

terms involving & have been linearized as shown in Equations 17 and 18.

Only the three body axis direction cosines are unknown in the vectors AV

and &D. The other unknowns in Equations (8), (9), and (1Z) are: .DT' three;
dtT' one; t, one; D I, three; t1 , one; and-UDTP three. The final count finds

nine equations and fifteen unknowns. Therefore, six constraint equations

must be written to complete the analytical description of the problem.

-13-
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4. 3 DIRECTION COSINE CONSTRAINT

The first of the six constraints relates the three body axis direction cosines

of which only two are independent. The equation is

2 2 2(DCx) + (DCy) + (DCz) = 1 (20)

To linearize Equation (20), let

DCx = DCYL + 6DCx (21)

DCy = DCyN + 6DCy (22)

DCz = DCz N + 6DCz (23)

Substituting Equations (21), (22), and (23) into Equation (20), expanding, and J
neglecting products of perturbations, yields

(DCx)(DCxN) + (DCy)(DCyN) + (DCz)(DCzN) : 1 (24)

This is the linearized direction cosine constraint.

4.4 IMPACT POINT CONSTRAINT

The impact point constraint can be written from inspection of Figure 1. It is

simply

DE I  (25)

Because the transformation between the earth fixed coordinate system and
the inertial coordinate system is a function of the unknown time t i , the exact

values of thecomponents of E I are not known before flight in the inertial

-14-
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coordinate system. To overcome this problem, the right hand side of

Equation (25) is replaced by the first two terms of its Taylor series expansion

EI= EI N + EIN(tI - tIN) (26)

in addition

-IN (27)EIN -- Tt EIN + _w -IN  (7

Because the rate of change of EIN in the earth fixed system is zero, Equation

(27) becomes

-IN XEI N  
(28)

Ltherefore

DI EIN + w X EIN(tI - tIN) (29)

Equation (29) is the linear form of the impact point constraint.

4.5 TEST ALTITUDE CONSTRAINT

The test altitude constraint defines the altitude at which the angle of attack or

separation distance constraint applies. By inspection this constraint can be

written as follows.

DT1 = IDTN' (30)

Equation (30) must be linearized to allow a linear solution of the whole system

of equations. This linearization is effected as follows.

-15-



First, rewrite the constraint as

IDTi 2  IDTNI2 (31)

which can be written as

-T D T  DTN *D-TN (32)

Let

DT = -TN -IDT (33)

Using Equation (33) and neglecting products of perturbations, the left hand

side of Equation (32) becomes

-T 2T::DTN. DTN + 2DTN 62T (34)

IHowever

SD T = D T - DTN (35)

therefore

-T -T ' 2DTN • DT -DTN -DTN (36)

Substituting Equation (36) into Equation (32) and rearranging the terms yields

the required linear constraint.

DTN -DTN DTN. DT (37)

-16-



4.6 ANGLE OF ATTACK CONSTRAINT

From a re-entry test viewpoint, it is desirable to have the capability to

provide near null angle of attack at a specified altitude. This requirement

can be fulfilled by the ATHENA vehicle without an active attitude control

system on the payload. Due to its simplicity the vehicle cannot always

completely null the angle of attack even with perfect system operation.

However, the small variations about null that do occur do not compromise

the test objectives.

Because the vehicle is spin stabilized the body axis and AV (the velocity

added by the third and fourth stages) are parallel. Therefore if AV and
d DT are parallel,the angle of attack will be nulled. From Figure 3 it

can be seen that the integral of & adds a degree of freedom in the vertical

plane that is not present in the horizontal plane. Because there is insufficient

freedom in the horizontal plane the impact point and angle of attack constraints

can conflict. This conflict is best visualized as follows. It can be seen in

Figure 3 that the velocity increment, AV, will have to be parallel to the

vector sum of DR and w X DT to null angle of attack in the horizontal plane.

In most cases this attitude would not result in a proper impact. Therefore

the angle of attack in this plane cannot always be nulled. This problem is

not present in the vertical plane because of the extra degree of freedom

resulting from the integral of &.

This restriction does not compromise the usefulness of the system because

the deviations from zero angle of attack in the horizontal plane are within

acceptable limits. However, the angle of attack constraint equation must

be written in a manner that will not result in unrealizable solutions.

Therefore, it is necessary to write a constraint equation that causes only

the angle of attack in the vertical plane to be nulled. The derivation of

this constraint equation follows.

-17-
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The angle of attack constraint equation is written from inspection of

Figure 4. The vector ITN is normal to the vertical plane defined by

DTN and a-- N; that is,

-TN 7 _DTN x 'vN (38)

Therefore, 1 D X I lies in this vertical plane and is normal
to dt-T TN

t ~DT'

If

d D PX1T) AV =o (39)

then AV must lie in the plane shown in Figure 4. Therefore, the projections
dof Td D T and AV in the vertical plane must be parallel. This satisfies the

angle of attack constraint.

This constraint is linearized as follows. Write Equation (39) in an alternate

form.

-TN" d DT 0  (40)

Let

AV = AVN + 6 AV (41)

and

dDdD+ 6 dD (42)
t -T D-TN + t -DT9-

-19-
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Substituting Equations (41) and (42) into Equation (40), expanding and

neglecting products of perturbations yields

d D '(!T X AV1 ) + AV* - d D TN XVN I ~ dT N (43)

Equation (43) is the linear form of the angle of attack constraint.

4.7 SEPARATION DISTANCE CONSTRAINT

Some of the experiments require a minimum separation distance between

the payload and the expended fourth stage at a given altitude. Since the

separation velocity increment due to the fourth stage retro rockets is

determined before the flight and separation occurs at a fixed time after

burnout, the separation distance can be maintained by controlling the time

between burnout and arrival at the test altitude.

That is,

KT t T - tT  (44)

This is the separation distance constraint.

II

-21-
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SEC TION 5

LINEARIZED EQUATION SUMMARY

The linearized dynamics equations are as follows.

-T 2R + -6R(tT - tR) + AD + AV(tTN - tTN) + AVN(tTN - tTN)

+ AVN(tT - ) + t TN 1 g dt dt1 + (tT - tTN)j TN g dt (45)

tR tR tR

D1 DR + -DR]t tR) + AD + AV(tIN - tTN) + &VN(tTN - tIN)

+ AVN(tI - t) + g dt dt1 + (tI - tIN)f I  g dt (46)

"R RtR

tTN

dD =---D V + V -(t T - t) - xD T  (47)
Tt-T -R f -TNtTN

tR

The direction cosine constraint is

1 = (DCx)(DCN) + (DCy)(DCYN) + (DCz)(DCZN) (48)

The impact point constraint is

DI = EIN + w XE 101 - tiN) (49)

-23-



The test altitude constraint is

-TN -TN R TN' DT (50)

The angle of attack constraint is

d D XA +AV-d D V dD xI
Tt -T -!TN - N~ -X'i -~TN -TN) 4 -N (it -TN -TN) (51)

The separation distance constraint is

K T=t T- t T(52)

-24-



SECTION 6

THE ITERATION LOOP, LINEARIZATIONS, AND ACCURACY

There are three types of terms that have been linearized. These are, (1)

terms which are functions of body attitude and time, (2) vectors from the

center of the earth to the vehicle, and (3) terms which are functions of

gravity.

The simple solution of the set of linearized equations will not provide a

sufficiently accurate solution for the body attitude and third stage ignition

time if the position and velocity at tR are dispersed from the nominal values

by reasonable amounts. This is mainly due to the linearization of the body

attitude dependent terms and is overcome with the use of the following

iteration procedure.

Because the body attitude (expressed as direction cosiies) is determined in

the solution of the equations, it is possible to recompute all of the so called
'nominal" terms which are functions of body attitude after the solution is

complete. Starting with values obtained from the nominal trajectory and

recomputing all of the "nominal" terms that are functions of body attitude

after the solution of the equations leads to an iterative procedure. This

iteration procedure converges on solutions which do not contain errors

resulting from the body attitude dependent terms. Perhaps this is more

easily understood by examining a particular example. Consider the term

(AV) (tT). The linearization used for this term is

(AV)(tT) = AV(tTN) + AV N(tT) - _._N(tTN) (53)

Because the criterion for convergence is that the direction cosines used to

compute the components of AV are identical to those found from the solution=-N
of the equations, the components of AV and AVN are equal when the iteration

-25-



is completed. Therefore, the first and last terms on the right hand side of

Equation (53) cancel and, since AV equals AVN, the iteration process has

nullified errors due to this linearization. Similar reasoning applies to all of

the terms which involve body attitude. A diagram of the iteration loop is

shown in Figure 5.

Terms containing integrals of g have been linearized by expanding them

in a Taylor series and retaining only first order terms, with the integrals

of g considered to be only functions of time. Consequently, the first order

position dispersions were disregarded as were the higher order and

cross product terms. The adequacy of this assumption has been verified by

comparing solutions from the guidance equations with equivalent solutions

obtained from a trajectory integration program. It was found that the gravity

integral approximations introduce the most significant errors into the guidance

equations, but these errors are an order of magnitude smaller than those

introduced by other links in the guidance loop (e.g., radar and attitude con-

troller errors) and consequently they can be tolerated.

Because of the nature of the vectors from the center of the earth to the

vehicle, the linearization of these vectors does not significantly affect the

accuracy of the solution. The solution of the present equations with the

iteration on the direction cosines results in an accuracy which easily meets

all of the program objectives for the ATHENA missions.

-26-



-~~~- ---- MMwNWOM IAA

RADAR
SU8SYSTEM 1'PRESENT POSITION AND

VELOCITY (D, AND QbA)

KEPLERI
EXTRAPOLATOR NOMINAL INPUTS

________FOR FIRST

O~ A D DRSOLUTION

EQUATODIRCETINCINS

TEST DIRECTION DCL
COSINES FOR SET DCL, : A
CONVERGENCE WHERE

ISIDCiN, -DCLI<cKL M AG.:A E C
X-, t y, z

COMAND FRO TRNSI

7Z7

TESTSEPRATIN N SUBTITTE SPARTII



£
REFERENCE

1. Katz, B., Prediction of Position and Velocity by Means of Kepler's
Equations, Aerospace Corporation, TOR-Z69(4810-31)-I,
30 March 1964.

L

O -29-



S

APPENDIX 1

SCALAR EOUATIONS

The expansion of the vector equations in the linearized equation summary

to obtain the required scalar equations is presented in this appendix.

The scalar components of Equation (45) are obtained using the expansion

of AD shown in Equation (19) and a similar expansion for AV and AVN.

The scalar components are shown in Equation (54) for i = x, y, z.

DTi = DRi + f)Ri(tT - tR) + AD IDCi + !AVI(tTN - t N)DCi

+ IAVI(DCiN)(t N - tTN) + IAVI(DCiN)(tT - t)

+ JtTN t gidt dtl + (tT - tTN)fTNgidt (54)
tR tR R

Equation (54) can be rewritten in the form

A. = (-.1)DTi + (Ci)tT + (Fi)DCi + (Gi)t T  (55)

where

A t TNgdR t ( t gidt dt I D R i + DRi tR

R tR tR

- IAVJ(DCiN)(trN - tTN) (56)

A-1



0

C .= lay I(DCiN) + 5ri + ftTNgidt (57)
tR

F. i = 1DI + LAV1(tTN - trN) (58)1

G i =- AV ! Iv (DCi N)  (59)

The scalar components of Equation (46) are obtained in a manner similar to

the method used to derive Equation (54) and can be written in the following

form, for i = x, y, z.

a. = (-1)Di + (ei)t I + (fi)DCi + (hi)t T  (60)

where

ai = tiNf tINgidt - ft IN ft 1 gidt dtl -DRi+ DRitR
tR tR tR

- fAVI (DCiN)(t TN - tIN) (61)

e• IDJC'N + Ri + ftlNgidt (62)

fi = A!DJ + 1V!(tlN - tTN) (63)

h. = - AV IDCiN (64)

A-2



The scalar components of Equation (47) are shown in Equations (65), (66),

and (67).

XF D Tx =Rx + 14VI DGx + ftTgt R gx -Tx~ YT

W yD z+ wzD Ty(65)

T T y Ry + AI~ tyt - 8TNy(tTN Y T
R

+w WD - w D (66)

d DT = DR + f IDCz + ftTNg9 dt- -tT

-wxD Ty+wyD Tx(67)

These equations can be written in the following form for i = x, y, Z.

k. 1-q- D. + (n )D~i + (r )tT + ( D +( D +( D(8
1t Ti 4D Tx + (sTy + ()Tz (8

where

= -Ri - tTR it (69)

n~i = (70)

1r. = gTi(71)
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0
w = 0 , w =-(, , w = +W72
wx = y -Wz Wz +Wy(2

s = +W s = 0 , s = - (73)x z y z x

v = -W , v = +W , v = 0 (74)x y y x z

The scalar components of Equation (49) are shown in Equations (75), (76),

and (77).

DIx = EINx + (wyEINz - IEzINy)(ti - tIN) (75)

Diy = EINy + ( IzEiNx -WxEINz)(ti - tIN) (76)

DIz = EIN z + (x EINy - W EINx)(tI - tIN) (77)

These equations can be written as follows for i = x, y, z.

ai = (-l)Dii + (-Yi)ti (78)

where

ax = .EINx + (wyEINz -wzEINy)tIN (79)

ay = -EINy + (W zEiNx - "xEiNz)tIN (80)

az = .EIN z + (xEINy - W yENx)tIN (81)

x = (WyE INz W zEINy) (82)
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NY=(wz EINx - w xE INz) (83)

Y= (w XE IN - yE INx) (84)

The scalar expansion of Equation (50) is shown below

DTN *DTN =DTN -DT (85)

therefore

IRTN I (D )D Tx+ (D TNY)D Ty + (D TNz)D T (86)

The expansion of Equation (51) has the following form

(N )d D + (N)dD + (N ) dD + (T )DCx

+ (T y)DCy + (T z)D~z = W (87)

where

N= I TNy I AV IDCzN - I TNIAV I DYN (88)

N y ~ A ~ N - TNx ! XI DCZ N (89)

N z= ITx11 I VDCYN - 1 T ! IAV IDCx N(90)

z T ~ zx- TNy - NTz

T d X)(TZDTN d T~D) (91)

T = 1"V 1('TNx TDTNz - 1 TNz ~TDTNJ)(2
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T =(1! V )(ITN d DT d 1TaDT (93)

w -~u- T~TNy-t TN)

+VDN(TN~-TN - TNZtDT Nz)

+ 1,VlDCzN(dTNDN dTx DTN (94)

and

ITNx =DTNy -AID N -D TNz !VI DCYN (5

1 -~ D TzJ:VIDC N D TN I V I D~zN (96)

I TNz = DTNx A!V IDCYN -D TN I V IDCx N (97)

The scalar, linearized equations are presented in matrix form in Equation

(98) on the following page. Any symbols that are used in this set of equations

that are not defined in the Glossary are defined by equations in this appendix.
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v- - F-

x -1 0 0 Cx  0 0 0 0 11, 0 0 Gx  0 0 0 D Tx
y 0 - 0 C 0 0 0 0 0 F 0 G 0 0 0 Dl,y

A, 0 0 C, 0 0 0 0 0 0 A, G, 0 0 0 Dr
z

.
x  0 0 0 0 - 0 0 fx 0 0 h

x  0 0 0 t F

y 0 0 0 0 0 1 0 ,y 0 fy 0 hy 0 0 0 D 
Ix

0 0 0 0 0 0-I e 0 0 fz h
z  

0 0 0 ID y

k0 0 v
x  

r 0 0 0 0 n
x  0 0 0 - I 0 0 D T

k O y r , 0 0 0 0 0 fY 0 0 0 -I 0 t
1  

(98)

k w / 0 r, 0 0 0 0 0 0 n
z  0 0 0 -I DCx

0 0 0 0 .1 0 0 " 0 0 0 0 0 0 0 DCy

o 0 0 0 0 1 0 Y 0 0 0 0 0 0 0 DCz

3' 0 0 0 0 0 0 -1 0 0 U 0 0 0 0 t,

1) 1 N 1) r)y 0 0 0 0 0 0 0 0 n 0 0 0 d .IN" l~atr

0 0 0 0 0 0 0 1 " r
'  

0 Nx NY N
Z  d DI

o n 0 I)C\ D:y
N  DC, N 0 0 0 d D

L"

If the earth centered inertial coordinate system is oriented with the z axis

aligned with the earth's spin vector w = s = v =- 0.

If the separation distance constraint is required, the 14th row of the matrix

is replaced by the equation

KT = tT -t r  (99)
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(APPENDIX 2

GLOSSARY

The symbols used in this document are shown graphically in Figures 1 and 2

in addition to being defined in this glossary.

A line under a letter (x) is used to denote a vector quantity.

A dot above a vector (A) is used to denote the time derivative of the vector

relative to an inertial coordinate frame.

Two dots above a vector (5) are used to denote the second time derivative of

the vector relative to an inertial coordinate frame.

dThe symbol (T x) is used to denote the time derivative of the vector x

relative to a rotating coordinate frame.

CThe first subscript on a vector is used to denote the time at which the vector

is expressed.

The subscript N is used to denote nominal parameters. Those nominal

parameters which are functions of body attitude are recomputed for each

iteration (see Page 25).

a = the thrust acceleration of the vehicle.

D = the vector from the center of the earth to the vehicle.

DCx

DCy = the three directions cosines of the vehicle body roll axis in
DCz the earth centered inertial coordinate system.

E the vector from the center of the earth to the desired

vacuum inpact point.

F = total applied force.

= the acceleration due to gravity.
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r
0

orthogonal unit vectors defining the earth centered inertial
kcoordinate system.

K. = convergence constant.

KT the time between fourth stage burnout and arrival at the test
altitude that satisfies the separation distance constraint.

TN the vector normal to the nominal vertical plane.

m mass.

0 = the vector from the desired vacuum impact point to the center
of the radar coordinate system.

R the vector from the radar coordinate system center to the
vehicle.

t = time (see Figure 2 for specific definitions).

6 = the perturbation from the nominal.

AD = the distance travelled during the third and fourth stage thrust-
ing due only to propulsion forces.

AV the velocity increment due to the third and fourth stage
thrusting.

T the time between third stage ignition and fourth stage
burnout.

- the rotation rate of the earth.

tT = time at test altitude.

tR = end point for Keplerian transfer of radar data (chosen as
nominal third stage ignition time).

t = third stage ignition time.

t, = fourth stage burnout time.

t = time of impact.

tM = time when adequate radar measurements are available.

tz  = second stage burnout time.

t = launch time. 4)

A-10



DISTRIBUTION

Internal

J. R. Ailder i). R. McColl

G. W. Anderson A. S. Mager

J. R. Arnold H. Marks

F. A. Ba skin J . S. Meditch

R. R. Brown D. F. Meronek

P. R. Dahl R. J. Morra

R. V. Erilane M. H. Murphy, Jr.

W. A. Feess J. C. Peale

E. Foxman W. E. Phillips, Jr.

R. S. Gaylord C. W. Pittmian

A. Gelernter G. A. Ream s

*J. F. Gloudenman S. Rovell

E. A. Goldberg M. Ruetmann

D. J. Griep W. J. Russell

R. Haldin K. A. Sandoval

R. A. Hayes C. W. Sarture

P. Hines T. A. Savo

J. P. Janus A. J. Schiewe

J. J. Jerger P. R. Schultz

D. G. Kazarian W. D. Schutt

R. H. Leatherman B. W. Sine

J. L. LeMay R. V. Soufi

J. E. Lesinski K. F. Steffan

D. MacPherson C. H. Tuller

R. K. McClean C. R. Welti

R. 3. McGrath 3. R. Westlake



DISTRIBUTION (Continued)

External

Defense Documentation Center White Sands Missile Range
Cameron Station Data Reduction Division
ATTN: TISIA New Mexico
Alexandria, Virginia (20) Maj. Barker

J. Gibson
Ballistic System Division J. B. Gose
United States Air Force G. L. Pyle
Norton Air Force Base
California White Sands Missile Range

Capt. D. W. Clonts (BSYA) Flight Simulation Laboratory
Lt. Col. R.H. Parker (BSYA) New Mexico

G. Hintze
Atlantic Research Corporation T. Katsura
Missile Systems Division W. McCool
Duarte, California C. Parker

D. Benun
J. D. Knight White Sands Missile Range
J. W. Reed Range Operation Directorate
D. E. Richard J. Marsh

J. Nance

WSMR, P and P
Capt. B. Neukam


